Introduction

Assumptions for reconstruction of the oriental Damascus steel blade, on the basis of existing (18/19th century) specimen from National Museum in Cracow:

- -to use traditional blacksmith techniques and modern scientific methods
- -to manufacture a high-carbon-content wootz ingot, showing dendritic structure
- -to modify microstructure by heat treatment
- -to hand-forge the blade similar to the museum-quality Damascus steel blade in respect of a shape, properties, micro- and macrostructure
- -to analyze properties and microstructure of the final product

Manufacturing the blade

-obtaining the wootz ingot: Induction furnace melting process was employed. Graphite-clay crucible was used. As charge Armco iron with graphite and minor addition of carbide-forming materials was used. Low cooling rate was provided.

-heat treatment: Cycle spheroidizing annealing

-forging the blade: The blade was hand-forged in 850-650 °C range. 85 cycles of forging and heating were necessary.

-hardening: Water quenching at 50 °C above Ac, curve with high tempering

-finishing: Mechanical polishing and etching in sulfuric acid

Barrie Ba

AGH University of Science and Technology, Cracow, Poland

Dendritic structure on the surface

Macrostructure of forged blade

Vickers hardness of the blade		
Before quenching	After quenching	
300,2	607,1	
308,2	573,6	
306,6	616,3	
av 305HV5	av · 599HV5	

Microstructure of forged blade

Conclusions

- 1. Microstructure of the manufactured blade matches microstructure of museum-quality wootz blades. [1]
- 2. Desired shape of the blade has been obtained.
- 3. Hot processing of the obtained ingot is possible after proper heat treatment and causes
 - development of visible Damascus pattern on the etched surface.
 - 4. Melting conditions executed in induction furnace did not provide controlled carburization of an ingot. Although, received chemical

composition still allowed to carry out further forging.

Comparison of finished blade and museum's refrence Finished Khanja

Before quenching	After quenching
300,2	607,1
308,2	573,6
306,6	616,3
av.:305HV5	av.: 599HV5

Microstructure after spheroidizing annealing

Bibliography

Chemical composition analysis (EDS X-ray spectroscopy

The state of the s

Chemical composition of the ingot

References:

- 1. Verhoeven J.D., Pendray A.H. (1998) Key Role of Impurities in Ancient Damascus Steel Blades. Journal of Materials, 50 (9), p. 58-64
- 2. Figiel L.S. (1991) On Damascus steel. Atlantis: Atlantis Arts Press.

<0.025 <0.002 <0.001 <0.003 <0.002 0.011 <0.03

- 3. Verhoeven J. D. (2002) Genuine Damascus Steel: a type of banded microstructure in hypereutectoid steels. Materials Technology, no.73 no. 8 p. 356-365
- 4. Piaskowski J. (1974) O stali damasceńskiej. Monografie z dziejów nauki i techniki, tom XCII. PAN

icrostructure of the raw ingot